
WP/18/1 

SAMA Working Paper: 

 

 

Forecasting the Daily Stock Market Volatility of the 

TASI Index: An ARCH Family Models Approach 

 

August 2018 

 

By  

Mohammed Alghfais1 

 

Economic Research Department 

Saudi Arabian Monetary Authority 

 

 
 

 

 

 

 

 

 

                                                 

1 Contact Details: Mohammed Alghfais, Email: malghfais@sama.gov.sa   

The views expressed are those of the author(s) and do not necessarily reflect the position 

of the Saudi Arabian Monetary Authority (SAMA) and its policies. This Working Paper 

should not be reported as representing the views of SAMA 

mailto:malghfais@sama.gov.sa


1 

 

Forecasting the Daily Stock Market Volatility of the 

TASI Index: An ARCH Family Models Approach 

Mohammed Alghfais 
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August 2018 

ABSTRACT 

Autoregressive conditional heteroscedasticity (ARCH) family models are 

commonly used to model and forecast the volatility of stock markets around the 

world. The best-performing model differs, however, depending on the market 

and time period of interest. Based on twenty years of daily closing data from 

October 19, 1998, to April 5, 2018, which contains 5,195 trading days, this 

study seeks to reexamine the ARCH family model that most accurately forecasts 

the volatility of the Tadawul (i.e., the Saudi stock exchange) All Share Index 

(TASI). The data set is divided into in-sample and out-of-sample periods. The 

forecasting models of the study considers range from the simple ARCH and 

generalized ARCH (GARCH) (1,1) models to more complex models, including 

exponential GARCH (EGARCH) (1,1) and threshold ARCH (TARCH) (1,1). 

The study indicates that the EGARCH(1,1) model outperforms all other models 

in forecasting the short-term volatility of TASI index returns, whereas the 

GARCH(1,1) model outperforms all other models in forecasting the long-term 

volatility of TASI index returns.  

Keywords: Modeling volatility, forecasting, stock market, ARCH family     

models, TASI. 

JEL classification codes: C53, C58, G17.  
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1. Introduction  

The past decade has been a veritable roller coaster for oil prices, including a 

great deal of volatility and some sharp declines. One decline, in 2008, was 

associated with the financial crisis. In response to this event, the Basel 

Committee of Bank Supervision agreed on an additional Basel Accord (BASEL 

III) in 2011. BASEL III then introduced these new requirements in 2013 to 

strengthen bank capital requirements and to decrease leveraging activities. The 

other decline may still be ongoing: oil prices have fallen from over US$100 per 

barrel in 2013 to mid-US$50 per barrel in 2017, which represents a 50 percent 

reduction. By the same token Saudi stock equity prices have fallen since 2015, 

and these moves have generally followed the course of oil prices and this 

indicates that Saudi stock equity prices are heavily influenced by oil prices. In 

response to this crash, Saudi Arabia, an oil-based economy, introduced its 

“vision 2030” program in 2016, an ambitious plan to transform the Saudi 

economy away from oil dependence. Hence, it is vital to reexamine the ARCH 

family model that most accurately forecasts the volatility of the Tadawul (i.e., 

the Saudi stock exchange) All Share Index (TASI) 

 A number of time-series approaches have been developed to forecast the 

volatility of stock market indices. Financial index volatility can be defined as 

the degree by which an index value fluctuates around its average value over a 

period of time; the standard deviation of returns is a common measure of 

volatility. Engle and Mezrich (1995) defined volatility as a process that 

“evolves over time in random but predictable ways.” Stock market volatility is 

a major concern for financial institutions and investors, economic policy 

makers, academics, and regulators alike. Busch et al. (2011) have argued that 
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precise volatility forecasts can benefit several financial applications, including 

option pricing, asset allocation, and hedging. In addition, Lee et al. (2002) 

discussed the idea that broad market volatility reflects investor sentiment, which 

is correlated with both business investment and aggregate consumption and may 

be loosely tied to economic business cycles. 

 The aim of the present study is to reexamine which model from the 

autoregressive conditional heteroscedasticity (ARCH) family of models can 

provide the most accurate volatility forecasts. More specifically, the 

performance of the standard ARCH model proposed by Engle (1982) will be 

compared to a number of ARCH models with additional components such as 

the generalized ARCH (GARCH) model, which was independently developed 

by Bollerslev (1986) and Taylor (1986), the threshold ARCH (TARCH) model 

from Brooks (2008), and the exponential generalized ARCH (EGARCH) model 

introduced by Nelson (1991). Model accuracy is based on in-sample statistical 

performance.  

 The current study uses daily data from TASI, the major index in Saudi 

Arabia that is supervised by the Capital Market Authority (CMA). The index in 

2017 included 171 publicly traded local companies. Although quite a few 

studies have utilized ARCH family models to forecast stock index volatility, 

few have compared forecasting power across models, particularly in the Saudi 

context. A study of this kind might provide useful information on the most 

appropriate model to use when forecasting the volatility of the TASI. The most 

precise forecast resulting from this study can substantially influence financial 

applications and provide insight into the future riskiness of Saudi financial 

markets. 
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2. Literature Review 

An abundance of empirical work has been conducted to forecast the 

volatility of stock market returns, although the majority of this work has focused 

on foreign stock indices. Because these markets are likely to perform differently 

from the Saudi stock market, any findings from these studies cannot be directly 

applied to TASI. Ng and McAleer (2004) compared the predictive forecasting 

power of Bollerslev’s (1986) GARCH(1,1) model and an asymmetry-

accommodating GJR(1,1) model introduced in 1993 by Glosten, Jagannathan, 

and Runkle for both the S&P 500 index and the Nikkei 225 index. (The GJR 

model, which is similar to the TARCH model, includes leverage terms for 

modeling asymmetric volatility clustering.) Ng and McAleer’s (2004) empirical 

results indicated that the forecasting performance of each model was dependent 

on the data used; the authors also found that the GJR(1,1) appeared to perform 

better with S&P 500 data, whereas the GARCH(1,1) model showed greater 

predictive power with Nikkei 225 data.  

 Because the volatility of stock indices exhibit time-varying properties, it 

is important to frequently estimate and compare the forecasting performance of 

the conditional volatility models. Alam et al. (2013) evaluated the performance 

of five ARCH family models when forecasting the volatility of two Bangladesh 

stock indices, the DSE20 and the DSE general. The authors found that past 

volatility significantly influenced future volatility in both indices when using 

any of the five ARCH family models; they also found that the EGARCH model 

indicated the presence of asymmetric behavior in volatility. Alam et al. (2013) 

evaluated each model based on both in-sample and out-of-sample statistical and 

trading performance. In their study, statistical performance was based on the 
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mean absolute error, mean absolute percentage error, root mean squared error, 

and theil’s inequality coefficient, while trading performance was based on 

annualized returns, annualized volatility, the sharpe ratio, and the maximum 

drawdown. Although the study provided a strong framework for evaluating the 

performance of the conditional volatility models, its results (in the case of both 

the DSE20 and DSE general) were rather inconclusive. In addition, an overall 

lack of explanation throughout the study and numerous technical errors have 

left ample room for improvement.  

AL-Najjar (2016) concentrated on Jordan’s Stock Market Volatility 

Using ARCH and GARCH Models. Her study applied; ARCH, GARCH, and 

EGARCH to investigate the behavior of stock return volatility for Amman 

Stock Exchange (ASE) covering the period from Jan. 1 2005 through Dec.31 

2014. Her findings suggest that the symmetric ARCH and GARCH models can 

capture characteristics of ASE, and provide more evidence for both volatility 

clustering and leptokurtic, whereas EGARCH output reveals no support for the 

existence of leverage effect in the stock returns at Amman Stock Exchange. 

Similarly Mhmoud and Dawalbait (2015) evaluated the forecasting 

performance of several conditional volatility models. Their study used daily 

data from Saudi Arabia’s TASI index returns over an approximately twelve-

year span. The forecasting models considered in their study ranged from the 

relatively simple GARCH(1,1) model to more complex GARCH models, 

including the EGARCH(1,1) and GRJ-GARCH(1,1) models. Their forecasting 

evaluation was based on two sets of statistical criteria for the six-month out-of-

sample forecast period. First, to select the volatility model that most closely 

followed the conditional variance of the return series, Mhmoud and Dawalbait 
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(2015) used the Ljung-Box Q statistics on both the standardized and squared 

standardized residuals as well as the Lagrange multiplier (ARCH-LM) test. The 

authors also used several other information criteria, including the Akaike 

information criteria (AIC) and maximum log-likelihood (LL) values, to 

determine the most appropriate model. Mhmoud and Dawalbait (2015) included 

a statistical evaluation of out-of-sample performance, similarly to Alam et al.’s 

(2013) study. Statistical performance was again based on four forecast error 

statistics: the mean absolute error, the mean absolute percentage error, the root 

mean squared error, and the Theil-U statistic. 

 Using the two information criteria (AIC and the maximum log-likelihood 

values) as selection criteria, Mhmoud and Dawalbait (2015) found that the GRJ-

GARCH(1,1) model was the best model using the AIC, although they 

considered the EGARCH(1,1) model to be the best model when using the 

maximum log-likelihood value. Although Mhmoud and Dawalbait (2015) only 

nominated the EGARCH(1,1) model once as the best model when using the 

information criterion, they suggested that this model would outperform the 

simple GARCH(1,1) model in the presence of asymmetric responses to 

economic and financial shocks. For statistical forecasting performance, their 

study found that the GRJ-GARCH(1,1) model outperformed all other models in 

forecasting the volatility of the TASI index.  

 Mhmoud and Dawalbait’s (2015) model evaluation approach is 

somewhat different from the approach used in Alam et al.’s study of 

Bangladesh’s stock indices. Although both studies included identical statistical 

forecast performance evaluations, Mhmoud and Dawalbait (2015) provided 

additional evaluations through a set of information criteria, while Alam et al. 
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(2013) expanded the evaluation criteria to include trading performance 

measures. Mhmoud and Dawalbait’s model selection process may have 

benefited from the inclusion of similar out-of-sample trading performance 

evaluations; their study could also be enhanced by expanding its data set. The 

study used daily data from the period January 1, 2005, to December 31, 2012. 

Of a total of 2,317 observations, Mhmoud and Dawalbait (2015) used the final 

124 observations to produce an out-of-sample forecast. Their decision to 

examine this seven-year period, however, was not justified within their study. 

With a plethora of additional TASI index data now available, the study could 

benefit from expanding its data horizon. 

 Stock markets are highly volatile, which makes modeling these index 

returns fairly difficult. But having accurate volatility forecasts is incredibly 

valuable in the financial industry, and such forecasts can benefit a number of 

financial applications. These forecasts are also valuable to policy makers and 

academics interested in understanding stock market dynamics. The present 

study determines the most accurate model for forecasting the volatility of the 

TASI based on statistical and trading performance. A few past studies that have 

examined stock market indices including the TASI have utilized a relatively 

small and unjustified range of observations. The current study includes daily 

TASI closing data starting from the inception of the index in October 1998. This 

study will benefit financial engineers and researchers by defining the volatility 

model that is most appropriate to underlie a number of prominent financial 

applications. 
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3. Methodology 

This study seeks to reexamine which model from the ARCH family of models 

can provide the most accurate volatility forecasts. The first model to provide a 

framework for volatility modeling (included as a model of interest in this study) 

was the ARCH model proposed by Engle (1982). The ARCH(1) model, which 

the present study includes as a benchmark model, suggests that the variance of 

the residuals in the current period are dependent on the squared error terms from 

the previous period. The model is provided by equation (1). 

 𝜎𝑡
2 = 𝛼0 + 𝛼1(𝑢𝑡−1)2   (1) 

 Where  𝜎𝑡
2 is the conditional variance, 𝛼0 and 𝛼1 are constant term and 

𝑢𝑡 is the error generated from the mean equation at time t. Bollerslev (1986) 

later introduced the GARCH model, which expanded on the work of Engle 

(1982). Bollerslev suggested that the variance of the residuals in the current 

period is dependent on both the squared error terms from the previous period 

and the past variance. The GARCH(1,1) model is expressed in equation (2). 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽(𝜎𝑡−1)2   (2) 

A number of previous empirical studies have found that stock market index 

returns exhibit asymmetries—that is, negative financial and economic shocks 

tend to increase volatility more than positive shocks do.  

 The GARCH(1,1) model is symmetric and is incapable of capturing the 

asymmetric behavior that is common across most stock market return data. The 

present study includes several extensions of the GARCH model, including the 

EGARCH(1,1) model developed by Nelson (2001) and the TARCH(1,1) model 

from Brooks (2008), to account for potential asymmetric behavior. The TARCH 
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model factors in the asymmetric behavior of the return series and includes a 

multiplicative dummy variable to determine whether a statistically significant 

difference occurs when shocks are negative. The TARCH(1,1) process is 

represented in equation (3). 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2 + 𝛾𝑢𝑡−1

2𝐼𝑡−1      (3) 

where 𝐼𝑡−1 is a dummy variable that is equal to 1 when a shock is negative and 

0 when a shock is positive. This model postulates that “good” and “bad” news 

have differential effects on the conditional variance. If bad news increases 

volatility, then a leverage effect is present, and the response to a given shock is 

not symmetric. 

 Similarly, the EGARCH model is based on a logarithmic conditional 

variance expression that can be written as in equation: (4).  

𝑙𝑛𝜎𝑡
2 = 𝜔 + 𝛽𝑙𝑛𝜎𝑡−1

2 + 𝛾
𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛼 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
]  (4) 

This equation illustrates the asymmetric responses in volatility to past shocks. 

The log of the conditional variance implies that the leverage effect is 

exponential and guarantees that forecasts of the conditional variance are 

nonnegative.  

4. Data Analysis 

The data used in this study consist of daily TASI performance observations 

collected from the Tadawul database. In this study, the daily observations were 

drawn from the index closing price. These data were collected from October 19, 

1998, to April 5, 2018, which contains 5,195 trading days. The total data were 
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divided into in-sample and out-of-sample data sets for forecasting purposes. 

Both one-month-ahead (short-term) and one-year-ahead (long-term) periods 

were estimated and evaluated. The TASI, which includes 171 leading 

companies in prominent industries of the Saudi economy, is representative of 

the Saudi equities market and consequently of the Saudi stock market. 

 A number of pre-estimation tests must be performed prior to modeling 

and forecasting the conditional variance of the TASI, as discussed in the 

following sections.  

4.1 Jarque-Bera Statistic 

The present study first examined the normality of TASI. The histogram and 

summary statistics presented in figure 1 indicate that the TASI has a positive 

skew (0.81) and high kurtosis (4.23) when compared to a normal distribution. 

The Jarque-Bera statistic reveals that the index is non-normal, at a 1 percent 

significance level. This result provides reason to convert the TASI series into a 

return series. 
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Figure 1. Histogram and Summary Statistics of TASI index 
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Median   6549.420

Maximum  20634.86
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Std. Dev.   3466.251

Skewness   0.817204

Kurtosis   4.235073

Jarque-Bera  908.4099

Probability  0.000000

 

4.2 Transformation of TASI Series 

Generally, stock indices are non-stationary and rather unpredictable over time. 

This measure is not appropriate for time-series analyses. The continuous 

compounding of TASI series (𝑃𝑡) converts this series into a return series (𝑅𝑡) 

using equation (5). 

𝑅𝑡 = ln
𝑃𝑡+1

𝑃𝑡
= ln 𝑃𝑡+1 − ln 𝑃𝑡        (5) 

 

Where 𝑃𝑡 and 𝑃𝑡+1 are the closing prices for two consecutive periods. The 

logarithmic difference is symmetric for positive and negative movements and 

is expressed in percentage terms. 

4.3 Descriptive Statistics and Stationarity Checks on Tests on TASI Returns 

Table 1 shows that the mean of the TASI return series is close to zero, which 

was expected. The standard deviation of the series is relatively high, indicating 
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that daily returns fluctuate sizably. The negative skewness of the return series 

also indicates that the asymmetric tail of the distribution extends toward 

negative values. The return series also has a large, positive kurtosis that 

indicates that the return distribution is fat-tailed. Overall, the return series is 

non-normal, given the reported Jarque-Bera statistic of 113019.2 with an 

associated p-value of 0.00. Table 1 also reports both the augmented Dickey-

Fuller and Phillips-Perron tests of series stationarity. Both tests reject the null 

hypothesis of series non-stationarity at the 1 percent level of significance. 

 

Table 1. TASI index returns 

Descriptive statistics 

Mean 0.000321 

Standard deviation 0.013948 

Skewness -0.894215 

Kurtosis 13.75784 

Jarque-Bera 25738.34 

Prob. value <0.001 

Augmented Dickey-Fuller -39.39605*** 

Phillips-Perron -66.80958*** 

Sample size 5,194 

*** Indicates significance at the 1% level 
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4.4 Conditional Mean Specification and ARCH LM Test 

In order to estimate and forecast the conditional variance for a series, a 

conditional mean equation must first be specified. In this study, an 

autoregressive moving average or ARMA(1,1) process was selected to model 

the conditional mean. This selection is based on both the Akaike and Schwarz 

information criteria. These information criteria were almost identical across 

ARMA(1,1), autoregressive or AR(1), and moving average or MA(1) models. 

The ARCH Lagrange multiplier (LM) test was then used to check for volatility 

clustering and heteroscedasticity in the data series. The null hypothesis for the 

ARCH LM test suggests that no ARCH effects are present. The ARCH LM test 

reports an F-statistic of 0.07 with an associated p-value of 0.78. Therefore, the 

TASI return has no clustered volatilities nor heteroscedasticity. 

5. Results and Discussion  

Tables 2 through 5 show the estimates of the ARCH(1), GARCH(1,1), 

TARCH(1,1,1), and EGARCH(1,1) models for daily TASI returns. The first set 

of outputs reported in the tables includes TASI returns data from October 19, 

1998, to April 5, 2018. These estimates were used to forecast short-term, one-

month-ahead series volatility. The second set of outputs reported in the tables 

includes TASI returns data from October 19, 1998, to May 5, 2017. These 

estimates were used to forecast long-term, one-year-ahead series volatility. All 

estimations assume a Student’s-t distribution, which previous studies have 

shown to be a more appropriate distribution when managing a large sample. 
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5.1 Output of ARCH Family Models on TASI Returns 

The outputs of both ARCH model estimates for the TASI returns indicate that 

all terms in the conditional mean and variance equations were statistically 

significant at the one percent level. An important result from these outputs is 

that the squared error terms from the previous period (𝛼1) are significant in the 

variance equation and have a significant impact on current volatility. 

Table 2. Estimates of the ARCH(1) model 

𝑹𝒕 = 𝒂𝟎 + 𝒂𝟏𝑹𝒕−𝟏 + 𝒂𝟐𝒖𝒕−𝟏 + 𝒖𝒕 

𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒖𝒕−𝟏

𝟐 
 

𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 

0.0008 

(5.97)*** 

-0.21 

(2.73)** 

0.13 

(1.25)** 

0.00016 

(4.31)*** 

1.671 

(4.05)*** 

 

Akaike information criterion:     6.349941 

Schwarz information criterion:  6.342368 

Log-likelihood:                          -16493.62 

𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 

0.0167 

(4.15)*** 

-0.19 

(-4.87)*** 

0.09 

(3.378)*** 

0.0064 

(6.78)*** 

1.534 

(8.547)*** 

 

Akaike information criterion:      6.154575 

Schwarz information criterion:   6.154341 

Log-likelihood:                          -16478.52 

 

Values in parentheses are z-statistics;  

*** indicates significance at the 1% level; ** indicates significance at the 5% level. 

 

Table 3. Estimates of the GARCH(1,1) model 

𝑹𝒕 = 𝒂𝟎 + 𝒂𝟏𝑹𝒕−𝟏 + 𝒂𝟐𝒖𝒕−𝟏 + 𝒖𝒕 

𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒖𝒕−𝟏

𝟐 + 𝜷𝝈𝒕−𝟏
𝟐 
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𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 𝛽 

0.00747 

(5.051)*** 

-0.1667 

(-1.368) 

0.068 

(2.34)*** 

0.254 

(4.98)*** 

0.515 

(13.35)*** 

0.2214 

(25.15)*** 

 

Akaike information criterion:     6.518202 

Schwarz information criterion:  6.509366 

Log-likelihood:                          -16931.51 

 

𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 𝛽 

0.0454 

(6.512)*** 

-0.187  

(-2.71)** 

0.0458 

(5.61)*** 

0.2487 

(5.12)*** 

0.658 

(9.124)*** 

0.1973  

(25.12)*** 

 

Akaike information criterion:     6.51121 

Schwarz information criterion:   6.50156 

Log-likelihood:                          -11027.1 

 

Values in parentheses are z-statistics; 

 *** indicates significance at the 1% level; ** indicates significance at the 5% level. 

 

The GARCH model outputs indicate that the AR component of the 

conditional mean equation was not significant in the estimates for short-run 

forecasting purposes but was significant at the 5 percent level in the estimates 

for long-run forecasting purposes. In both estimations, all GARCH model 

conditional variance components were statistically significant at the one percent 

level, which means that current volatility is influenced by squared error terms 

from the previous period (𝛼1) and past volatility (𝛽). 

Table 4. Estimates of the TARCH(1,1,1) model 

𝑹𝒕 = 𝒂𝟎 + 𝒂𝟏𝑹𝒕−𝟏 + 𝒂𝟐𝒖𝒕−𝟏 + 𝒖𝒕 

𝝈𝒕
𝟐 = 𝜶𝟎 + 𝜶𝟏𝒖𝒕−𝟏

𝟐 + 𝜷𝝈𝒕−𝟏
𝟐 + 𝜸𝒖𝒕−𝟏

𝟐𝑰𝒕−𝟏 

𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 𝛽 𝛾 

0.3173 

(3.15)*** 

-0.5 

(-2) 

0.781 

(1.987)*** 

0.0124 

(6.561)*** 

0.0154 

(6.451)*** 

0.1754 

(37.154)*** 

0.1542 

(9.8113)*** 

 

Akaike information criterion:     4.154721 

Schwarz information criterion:  4.034513 

Log-likelihood:                          -13457.17 
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𝒂𝟎 𝑎1 𝑎2 𝛼0 𝛼1 𝛽 𝛾 

0.0157 

(6.543)*** 

-0.50 

(-2.1) 

0.9345 

(2.932)*** 

0.01574 

(8.754)*** 

0.01365 

(6.324)*** 

0.1274 

(55.32)*** 

0.0157 

(25.34)*** 

 

Akaike information criterion:      4.156421 

Schwarz information criterion:   4.024513 

Log-likelihood:                           -13450.37 

 

Values in parentheses are z-statistics; *** indicates significance at the 1% level; 

** indicates significance at the 5% level. 

 

The TARCH model outputs illustrate that the AR component of the conditional 

mean equation was not significant in either estimate. In both runs, all TARCH 

model conditional variance components were statistically significant at the one 

percent level, which means that current volatility is influenced by squared error 

terms from the previous period (𝛼1) and past volatility (𝛽) and is also 

asymmetric in nature (𝛾).  
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Table 5. Estimates of the EGARCH(1,1) model 

𝑹𝒕 = 𝒂𝟎 + 𝒂𝟏𝑹𝒕−𝟏 + 𝒂𝟐𝒖𝒕−𝟏 + 𝒖𝒕 

𝒍𝒏𝝈𝒕
𝟐 = 𝝎 + 𝜷𝒍𝒏𝝈𝒕−𝟏

𝟐 + 𝜸
𝒖𝒕−𝟏

√𝝈𝒕−𝟏
𝟐

+ 𝜶 [
|𝒖𝒕−𝟏|

√𝝈𝒕−𝟏
𝟐

− √
𝟐

𝝅
] 

𝒂𝟎 𝑎1 𝑎2 𝜔 𝛼 𝛽 𝛾 

0.1673 

(6.754)**

* 

-0.5478 

(-1.875) 

0.986 

(2.75)** 

-0.0875 

(-13.1)*** 

0.3573 

(24.2)*** 

0.00154 

(94.2)*** 

-0.157 

(-8.65)*** 

 

Akaike information criterion:     5.654213 

Schwarz information criterion:   5.554321 

Log-likelihood:                          -135431.15 

 

𝒂𝟎 𝑎1 𝑎2 𝜔 𝛼 𝛽 𝛾 

0.1671 

(5)*** 

-0.5034 

(-1.564) 

0.8921 

(2.6)*** 

-0.0764 

(-12.5)*** 

0.3551 

(23.4)*** 

0.00143 

(90.1)*** 

-0.1431 

(-6.54)*** 

 

Akaike information criterion:     5.642431 

Schwarz information criterion:   5.554215 

Log-likelihood:                          -13541.37 

 

Values in parentheses are z-statistics;  

*** indicates significance at the 1% level; ** indicates significance at the 5% level. 

 

Again, the EGARCH model outcomes illustrate that the AR component 

of the conditional mean equation was not significant in either estimate. In both 

estimates, all EGARCH model conditional variance components were 

statistically significant at the one percent level, which indicates that current 

volatility is dependent on yesterday’s residuals and volatility, and an 

asymmetric behavior in volatility was present. This implies that “bad” news has 

a greater impact on TASI returns than “good” news.  
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5.2 Statistical Performance 

The models of interest were then compared in terms of their short-run and long-

run forecasting abilities. The evaluation was based on four forecast error 

statistics: root mean squared error (RMSE), mean absolute error (MAE), mean 

absolute percent error (MAPE), and the Theil inequality coefficient (TIC). 

These statistics were computed as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑡 − 𝜎𝑡)2

𝑛

𝑡=1

 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑡 − 𝜎𝑡|

𝑛

𝑡=1

 

𝑀𝐴𝑃𝐸 =
1

𝑛
= ∑ |

(�̂�𝑡 − 𝜎𝑡)

𝜎𝑡
|

𝑛

𝑡=1

 

𝑇𝐼𝐶 = 
√

1

𝑛
∑(𝜎𝑡−�̂�𝑡)2

√
1

𝑛
∑ �̂�𝑡+√

1

𝑛
∑ 𝜎𝑡

 

In all the above statistics, “n” represents the number of in-sample forecasts 

(one-month-ahead) and one-year-ahead forecasts; 𝜎𝑖 represents the actual 

volatility experiences at time “t,” while �̂�𝑖 is the forecasted volatility at time 

“t.” Each statistic is calculated by examining the difference between the 

forecasted conditional variance and their true values. The model that exhibits 

the lowest values of these error measurements is thus considered to be the best 

model. Tables 6 and 7 present comparisons of the in-sample statistical 

performance results for short-term (one-month-ahead) and long-term (one-

year-ahead) forecasts, respectively. 
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Table 6. One-month ahead in-sample statistical performance results for 

TASI index returns 

Performance 

Indicator 

Models 

ARCH(1) GARCH(1,1) TARCH(1,1,1) EGARCH(1,1) 

Root mean 

squared error 
0.981405 0.982033 0.983029 0.982406 

Mean 

absolute error 
0.818495 0.819382 0.817891 0.816968 

Mean 

absolute 

percentage 

error 

170.8819 191.1239 155.4313 140.632 

Theil 

inequality 

coefficient 

1.286674 1.281805 1.2936 1.297988 

Note: bold text indicates the best performer. 

 

As table 6 shows, the short-term forecast performance results indicate 

that the ARCH(1) model has the lowest RMSE, at 0.978975; the 

EGARCH(1,1) model has the lowest MAE and MAPE, at 0.814538 and 

140.8644, respectively; finally, the GARCH(1,1) model has the lowest 

reported Theil inequality coefficient, at 0.909375. The EGARCH(1,1) model 

outperformed all other models in forecasting the short-term volatility of TASI 

index returns. These results indicate that a model that includes asymmetry-

accommodating parameters is most appropriate for short-term forecasting 

purposes.  
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Table 7. One-year-ahead in-sample statistical performance results for TASI 

index returns  

Performanc

e Indicator 

Models 

ARCH(1) GARCH(1,1) TARCH(1,1,1) EGARCH(1,1) 

Root mean 

squared error 

1.561076 1.55723 1.561926 1.561681 

Mean 

absolute error 

1.39756 1.393416 1.39809 1.397947 

Mean 

absolute 

percentage 

error 

87.9303 97.8412 83.6473 76.0526 

Theil 

inequality 

coefficient 

1.733593 1.728196 1.735496 1.739934 

Note: bold text indicates the best performer. 

 

As table 7 shows, the long-term forecast performance results indicate that 

the GARCH(1,1) model had the lowest RMSE (1.55723), MAE (1.393416), 

and Theil inequality coefficient (1.728196). The TARCH(1,1,1) model had 

the lowest reported MAPE, at 83.6473. The GARCH(1,1) model had the 

lowest error measurement values in three of four categories and therefore 

outperformed all other models in forecasting the long-term volatility of TASI 

index returns. These results show that the relatively simple symmetric 

GARCH model performs better in forecasting longer-term, one-year-ahead 
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conditional variance of the TASI index returns, despite the existence of 

asymmetries in the data.  

These results indicate that including “leverage effects” or asymmetric 

components is important for forecasting short-run volatility. When the 

forecast horizon is expanded, however, the inclusion of asymmetric 

components does not benefit conditional volatility forecast performance, and 

simpler ARCH family models perform better than those that are more 

complex. 

6. Conclusion 

This study has employed the ARCH family model approach to forecast the 

daily stock market volatility of the TASI index. The data were collected from 

October 19, 1998, to April 5, 2018, which represents 5,195 trading days. The 

data set was divided into in-sample and out-of-sample periods. The 

forecasting models considered in this study ranged from the simple ARCH 

and GARCH(1,1) models to more complex models, including EGARCH(1,1) 

and TARCH(1,1). Models were selected based on out-of-sample statistical 

performance.  

 This study has indicated that the EGARCH(1,1) model outperforms all 

other models in forecasting the short-term volatility of TASI index returns. 

The inclusion of leverage effects or asymmetric components is thus important 

for forecasting short-run volatility. In addition, the GARCH(1,1) model was 

shown to outperform all other models in forecasting the long-term volatility 

of TASI index returns. When the forecast horizon is expanded, the inclusion 

of asymmetric components thus does not benefit conditional volatility forecast 
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performance; simpler ARCH family models perform better than those that are 

more complex.  

 Based on the results, a promising next step that should be undertaken 

to further advance the research presented in this study would be to identify the 

structural break in the series mean and variance using the Pruned Exact Linear 

Time (PELT) algorithm, where structural breaks dates are captured using 

dummy variables in the GARCH models. 
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